Decentralized Algorithms for Spatially Distributed Systems

Guohui Song

Old Dominion University

Joint work with Nazar Emirov and Qiyu Sun

- ☐ Multiple nodes/agents with computation, communication, and storage.
- ☐ Each agent would perform its own computation at each iteration.
- ☐ No central coordinator.
- ☐ Each agent would communicate with its neighbors at each iteration.
- ☐ Graphs would be used to model the communication topology.

- ✓ Multiple nodes/agents with computation, communication, and storage.
- ☐ Each agent would perform its own computation at each iteration.
- ☐ No central coordinator.
- ☐ Each agent would communicate with its neighbors at each iteration.
- ☐ Graphs would be used to model the communication topology.

- ✓ Multiple nodes/agents with computation, communication, and storage.
- ☑ Each agent would perform its own computation at each iteration.
- ☐ No central coordinator.
- ☐ Each agent would communicate with its neighbors at each iteration.
- ☐ Graphs would be used to model the communication topology.

- ✓ Multiple nodes/agents with computation, communication, and storage.
- ☑ Each agent would perform its own computation at each iteration.
- ✓ No central coordinator.
- ☐ Each agent would communicate with its neighbors at each iteration.
- ☐ Graphs would be used to model the communication topology.

- ✓ Multiple nodes/agents with computation, communication, and storage.
- ☑ Each agent would perform its own computation at each iteration.
- ✓ No central coordinator.
- ☑ Each agent would communicate with its neighbors at each iteration.
- ☐ Graphs would be used to model the communication topology.

- ✓ Multiple nodes/agents with computation, communication, and storage.
- ☑ Each agent would perform its own computation at each iteration.
- ✓ No central coordinator.
- ☑ Each agent would communicate with its neighbors at each iteration.
- ☑ Graphs would be used to model the communication topology.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x})$$

- $\square \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- \square Assume |V| = N for simplicity.
- $\square f_i(\boldsymbol{x})$ is a local smooth and convex function.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x})$$

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- \square Assume |V| = N for simplicity.
- $\square f_i(\boldsymbol{x})$ is a local smooth and convex function.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x})$$

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- ightharpoonup Assume |V| = N for simplicity.
- $\square f_i(\boldsymbol{x})$ is a local smooth and convex function.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x})$$

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- ightharpoonup Assume |V| = N for simplicity.
- $\square f_i(\boldsymbol{x})$ is a local smooth and convex function.

Model

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x})$$

 $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.

ightharpoonup Assume |V| = N for simplicity.

 $\Box f_i(\boldsymbol{x})$ is a local smooth and convex function.

Applications

multiple-agent control

distributed energy system

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longleftarrow \begin{cases} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} \quad \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{cases}$$

$$\min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i)$$

s.t.
$$\boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \blacktriangleleft$$

$$\min_{oldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(oldsymbol{x}) = \sum_{i \in V} f_i(oldsymbol{x}_i)$$
s.t. $oldsymbol{x}_i = oldsymbol{y}, oldsymbol{x}_j = oldsymbol{y}, \quad (i, j) \in E$

s.t.
$$\boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E$$

consensus

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longrightarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} \quad \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix}$$

$$\min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i)$$

s.t.
$$\boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E$$

consensus

Consensus-based Decentralized Algorithms

$$\boldsymbol{x}_i^{k+1} = A(\boldsymbol{x}_j^k, j \in N_i) + G(\nabla f_i(\boldsymbol{x}_i^k))$$

local aggregation gradient descent

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longrightarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} & \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix}$$

consensus

$$\boldsymbol{x}_i^{k+1} = A(\boldsymbol{x}_j^k, j \in N_i) + G(\nabla f_i(\boldsymbol{x}_i^k))$$
local aggregation gradient descent

- O Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
- O Distributed: each agent deals with local computation.
- O Decentralized: each agent only communicates with its neighbors.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longrightarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} & \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix}$$

consensus

$$\mathbf{x}_i^{k+1} = A(\mathbf{x}_j^k, j \in N_i) + G(\nabla f_i(\mathbf{x}_i^k))$$
local aggregation gradient descent

- ⊙ Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
- O Distributed: each agent deals with local computation.
- O Decentralized: each agent only communicates with its neighbors.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longrightarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} \quad \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix}$$

consensus

$$\boldsymbol{x}_i^{k+1} = A(\boldsymbol{x}_j^k, j \in N_i) + G(\nabla f_i(\boldsymbol{x}_i^k))$$
local aggregation gradient descent

- ⊙ Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
- ⊙ Distributed: each agent deals with local computation.
- O Decentralized: each agent only communicates with its neighbors.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longrightarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} \quad \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix}$$

consensus

$$\boldsymbol{x}_i^{k+1} = A(\boldsymbol{x}_j^k, j \in N_i) + G(\nabla f_i(\boldsymbol{x}_i^k))$$
local aggregation gradient descent

- ⊙ Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
- ⊙ Distributed: each agent deals with local computation.
- ② Decentralized: each agent only communicates with its neighbors.

$$\min_{\boldsymbol{x} \in \mathbb{R}^N} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}) \longleftarrow \begin{bmatrix} \min_{\boldsymbol{x}_i \in \mathbb{R}^N, i \in V} F(\boldsymbol{x}) = \sum_{i \in V} f_i(\boldsymbol{x}_i) \\ \text{s.t.} \quad \boldsymbol{x}_i = \boldsymbol{y}, \boldsymbol{x}_j = \boldsymbol{y}, \quad (i, j) \in E \end{bmatrix} \text{ consensus}$$

Consensus-based Decentralized Algorithms

$$\mathbf{x}_{i}^{k+1} = A(\mathbf{x}_{j}^{k}, j \in N_{i}) + G(\nabla f_{i}(\mathbf{x}_{i}^{k}))$$
local aggregation gradient descent

- ⊙ Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
- ⊙ Distributed: each agent deals with local computation.
- Decentralized: each agent only communicates with its neighbors.

Question

Could we also distribute the global variable x into local blocks?

- \square Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ☐ Assumption: A has off-diagonal decay.
 - O polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - O exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \blacksquare Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ☐ Assumption: A has off-diagonal decay.
 - O polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - O exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \blacksquare Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ✓ Assumption: A has off-diagonal decay.
 - O polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - O exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \blacksquare Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ✓ Assumption: A has off-diagonal decay.
 - Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - O exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \blacksquare Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ✓ Assumption: A has off-diagonal decay.
 - Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \blacksquare Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ✓ Assumption: A has off-diagonal decay.
 - Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - Θ exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - O the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

- \square Example: $\min_{\boldsymbol{x}} \|A\boldsymbol{x} \boldsymbol{b}\|^2 = \sum_{i} (A_i^T \boldsymbol{x} \boldsymbol{b}_i)^2$
- ☑ Assumption: A has off-diagonal decay.
 - Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$
 - Θ exponential decay: $|A_{ij}| \le Ce^{-\gamma|i-j|}, \quad \gamma > 0$
- \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.
 - Θ the component $x_i = (\mathsf{A}^{-1}\boldsymbol{b})_i$ depends mostly on the neighbors of b_i .

 \square Example: $\min_{\boldsymbol{x}} ||A\boldsymbol{x} - \boldsymbol{b}||^2 = \sum_{i} (A_i^T \boldsymbol{x} - \boldsymbol{b}_i)^2$

☑ Assumption: A has off-diagonal decay.

 Θ polynomial decay: $|A_{ij}| \le C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$

 Θ exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$

lacktriangleq Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.

 Θ the component $x_i = (\mathsf{A}^{-1}\boldsymbol{b})_i$ depends mostly on the neighbors of b_i .

 \square Example: $\min_{\boldsymbol{x}} ||A\boldsymbol{x} - \boldsymbol{b}||^2 = \sum_{i} (A_i^T \boldsymbol{x} - \boldsymbol{b}_i)^2$

☑ Assumption: A has off-diagonal decay.

 Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$

 Θ exponential decay: $|A_{ij}| \le Ce^{-\gamma|i-j|}, \quad \gamma > 0$

 $oxedsymbol{\boxtimes}$ Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.

 Θ the component $x_i = (\mathsf{A}^{-1} \boldsymbol{b})_i$ depends mostly on the neighbors of b_i .

true vs. approximation.

component-wise log error.

Use overlapped blocks of \boldsymbol{x} .

 \square Example: $\min_{\boldsymbol{x}} ||A\boldsymbol{x} - \boldsymbol{b}||^2 = \sum_{i} (A_i^T \boldsymbol{x} - \boldsymbol{b}_i)^2$

☑ Assumption: A has off-diagonal decay.

 Θ polynomial decay: $|A_{ij}| \leq C(1+|i-j|)^{-\alpha}, \quad \alpha > 1$

 Θ exponential decay: $|A_{ij}| \leq Ce^{-\gamma|i-j|}, \quad \gamma > 0$

 \square Wiener's Lemma: A^{-1} has a similar off-diagonal decay as A.

 Θ the component $x_i = (A^{-1}b)_i$ depends mostly on the neighbors of b_i .

true vs. approximation.

component-wise log error.

Use overlapped blocks of \boldsymbol{x} .

- $\square \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- \square The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- $\square V$ could be divided into a family of domains.
 - O Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - O There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{G} = (V, E)$ is an undirected "decentralized" graph.
- \square The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- $\square V$ could be divided into a family of domains.
 - O Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - O There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{G} = (V, E)$ is an undirected "decentralized" graph.
- ightharpoonup The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- $\square V$ could be divided into a family of domains.
 - O Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - O There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- \Box The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- - O Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - O There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- ightharpoonup The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- - Θ Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - O There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{\nabla} \mathcal{G} = (V, E)$ is an undirected "decentralized" graph.
- \Box The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- - Θ Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - \odot There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- $\mathbf{G} = (V, E)$ is an undirected "decentralized" graph.
- \Box The counting measure μ has polynomial growth:

$$\mu(B(i,r)) \le C(1+r)^d, \quad i \in V, r > 0$$

- - Θ Partition: $V = \bigcup_{\lambda \in \Lambda} D_{\lambda}$, where λ is a fusion center.
 - \odot There exists R-neighbors $D_{\lambda,R}$ of D_{λ} such that $D_{\lambda} \subseteq D_{\lambda,R}$ and $\rho(D_{\lambda}, V \setminus D_{\lambda,R}) > R$.
- \square Each local function f_i is banded: it only depends on x_j for $j \in B(i, m)$.

- ☐ Iterative Distributed/Decentralized Algorithm
 - O local minimization: $\boldsymbol{w}_{\lambda}^{(n)} = \operatorname{argmin}_{\boldsymbol{u}} F(\chi_{D_{\lambda,R}}^* \boldsymbol{u} + I_{V \setminus D_{\lambda,R}} \boldsymbol{x}^{(n)})$
 - O weighted aggregation: $\boldsymbol{x}^{(n+1)} = \sum_{\lambda \in \Lambda} I_{D_{\lambda}} \chi_{D_{\lambda,R}}^* \boldsymbol{w}_{\lambda}^{(n)}$

- ☑ Iterative Distributed/Decentralized Algorithm
 - O local minimization: $\boldsymbol{w}_{\lambda}^{(n)} = \operatorname{argmin}_{\boldsymbol{u}} F(\chi_{D_{\lambda,R}}^* \boldsymbol{u} + I_{V \setminus D_{\lambda,R}} \boldsymbol{x}^{(n)})$
 - O weighted aggregation: $\boldsymbol{x}^{(n+1)} = \sum_{\lambda \in \Lambda} I_{D_{\lambda}} \chi_{D_{\lambda,R}}^* \boldsymbol{w}_{\lambda}^{(n)}$

☑ Iterative Distributed/Decentralized Algorithm

- Θ local minimization: $\boldsymbol{w}_{\lambda}^{(n)} = \operatorname{argmin}_{\boldsymbol{u}} F(\chi_{D_{\lambda,R}}^* \boldsymbol{u} + I_{V \setminus D_{\lambda,R}} \boldsymbol{x}^{(n)})$
- O weighted aggregation: $\boldsymbol{x}^{(n+1)} = \sum_{\lambda \in \Lambda} I_{D_{\lambda}} \chi_{D_{\lambda,R}}^* \boldsymbol{w}_{\lambda}^{(n)}$

☑ Iterative Distributed/Decentralized Algorithm

- Θ local minimization: $\boldsymbol{w}_{\lambda}^{(n)} = \operatorname{argmin}_{\boldsymbol{u}} F(\chi_{D_{\lambda,R}}^* \boldsymbol{u} + I_{V \setminus D_{\lambda,R}} \boldsymbol{x}^{(n)})$
- Θ weighted aggregation: $\boldsymbol{x}^{(n+1)} = \sum_{\lambda \in \Lambda} I_{D_{\lambda}} \chi_{D_{\lambda,R}}^* \boldsymbol{w}_{\lambda}^{(n)}$

☑ Iterative Distributed/Decentralized Algorithm

- Θ local minimization: $\boldsymbol{w}_{\lambda}^{(n)} = \operatorname{argmin}_{\boldsymbol{u}} F(\chi_{D_{\lambda,R}}^* \boldsymbol{u} + I_{V \setminus D_{\lambda,R}} \boldsymbol{x}^{(n)})$
- Θ weighted aggregation: $\boldsymbol{x}^{(n+1)} = \sum_{\lambda \in \Lambda} I_{D_{\lambda}} \chi_{D_{\lambda,R}}^* \boldsymbol{w}_{\lambda}^{(n)}$

Convergence Theorem ([Emirov, S., and Sun, 2024])

$$\|\boldsymbol{x}^{(n)} - \boldsymbol{x}^*\|_p \le C(\delta_R)^n \|\boldsymbol{x}^{(0)} - \boldsymbol{x}^*\|_p, \quad 1 \le p \le \infty$$

where
$$\delta_R = c(1 - \beta/L)^{(R-2m-1)/(2m)}(R+1)^d$$

Emirov, Song, and Sun, A Divide-and-Conquer Algorithm for Distributed Optimization on Networks, Applied and Computational Harmonic Analysis, 70(2024)

Numerical Experiments: Least Squares

 \square Consider $F(\boldsymbol{x}) = \frac{1}{2} \| \mathbf{H} \boldsymbol{x} - \boldsymbol{b} \|_2^2$

 $OH = I + 5L_{\mathcal{G}}$, where $L_{\mathcal{G}}$ is the graph Laplacian.

 $\bigcirc b$ is randomly chosen.

Numerical Experiments: LASSO

 \square Consider $F(\boldsymbol{x}) = \frac{1}{2} \| \mathbf{H} \boldsymbol{x} - \boldsymbol{b} \|_2^2 + \mu \| \boldsymbol{x} \|_1$

 $OH = I + 5L_{\mathcal{G}}$, where $L_{\mathcal{G}}$ is the graph Laplacian.

 $\bigcirc b$ is randomly chosen.

Numerical Experiments: SVM

Consider
$$F(\boldsymbol{x}) = \sum_{i} \max \left\{ 0, 1 - y_i \sum_{j} H_{i,j} x_j \right\} + \mu \|\boldsymbol{x}\|_1$$

 $OH = I + 5L_{\mathcal{G}}$, where $L_{\mathcal{G}}$ is the graph Laplacian.

 $\bigcirc y$ is randomly chosen.

Outlook

☐ Summary

O The proposed method is distributed in both the objective functions and the variables.

O It relies on the spatially local structures of the problem.

O It works well for both smooth and non-smooth problems.

☐ References

O Emirov, Song, and Sun, A Divide-and-Conquer Algorithm for Distributed Optimization on Networks, Applied and Computational Harmonic Analysis, 70(2024)

☐ Contact: Guohui Song

O Email: gsong@odu.edu

O Webpage: gsong-math.github.io

Outlook

☑ Summary

- The proposed method is distributed in both the objective functions and the variables.
- ⊙ It relies on the spatially local structures of the problem.
- ⊙ It works well for both smooth and non-smooth problems.

✓ References

☑ Contact: Guohui Song

- ⊘ Email: gsong@odu.edu