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Decentralized Optimization on Graphs

Multiple nodes/agents with computation, communication, and storage.

Each agent would perform its own computation at each iteration.

No central coordinator.

Fach agent would communicate with its neighbors at each iteration.

Graphs would be used to model the communication topology.
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Optimization on Networks

Model
min F(@) = Y,ey fi(@)

xRN

G = (V, E) is an undirected “decentralized” graph.

[J Assume |V| = N for simplicity.

fi(x) is a local smooth and convex function.
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Optimization on Networks

Model Applications

min F(z) =) ey fil®)

G = (V, F) is an undirected “decentralized” graph.
Assume |V| = N for simplicity.

v] fi(x) is a local smooth and convex function.

distributed energy system
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gradient descent
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O Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...

O Distributed: each agent deals with local computation.

O Decentralized: each agent only communicates with its neighbors.
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Consensus-based Decentralized Algorithms

min F(x)=) . fi(z;)
RN ¢ > -
. s.t. x; =Yy, L =1, (2,3) € I | consensus

Consensus-based Decentralized Algorithms

zit1 = A(ak,j € ;) + G(Vfi(@F)

1

local aggregation gradient descent

® Examples: DGD, D-ADMM, EXACT, PG-EXTRA, NIDS...
® Distributed: each agent deals with local computation.

® Decentralized: each agent only communicates with its neighbors.

Question

Could we also distribute the global variable & into local blocks?
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Example: ming |Az — b||* =Y . (Al — b;)?

Assumption: A has off-diagonal decay.

O polynomial decay: |A;;| < C(A1+1]i—j|)7%, a>1

O exponential decay: Al = Ce =il ~ >0

Wiener’s Lemma: A~! has a similar off-diagonal decay as A.

O the component z; = (A~!b)); depends mostly on the neighbors of b;.
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Example: ming ||Ax — b||2 = 3. (A & — b;)?

Assumption: A has off-diagonal decay. ® ® ® ®
© polynomial decay: |A;;| < C(1+|i—j))™%, a>1
@ exponential decav: [4;;| < Ce= =il ~ > _ ® ® ® &
i .. 1 i 1 |

Wiener’'s Lemma: A~! has a similar off-diagonal decay as A.

® the component x; = (A~'b)); depends mostly on the neighbors of b;.
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G = (V, E) is an undirected “decentralized” graph.

The counting measure p has polynomial growth:
uw(B(i,r) <C(1+7r)? ieV,r>0

V' could be divided into a family of domains.

O Partition: V' = J, . Da, where X is a fusion center.

O There exists R-neighbors Dy r of Dy such that Dy C D, g and p(Dx, V\Dyxr) > R.

Each local function f; is banded: it only depends on x; for j € B(i,m).
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Iterative Distributed /Decentralized Algorithm

O 1ocal minimization: 'wf\”’) = argmin,, F’ (XEA, U+ Iyv\p, R:c(”))
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Decentralized Algorithm

v] [terative Distributed /Decentralized Algorithm

© 1ocal minimization: 'wf\”) = argmin,, F'(xp, v+ IV\DA?RI’(R))

O weighted aggregation: z("t1) = > ek IDAXE}\,ng\n)

Convergence Theorem ([Emirov, S., and Sun, 2024|)
|2 —2*[|, < C(6r)" |2 — 2, 1<p< oo

where 6 = e(l — 8/L)\F=2r=tli2esli s eny) e

Emirov, Song, and Sun, A Divide-and-Conquer Algorithm for Distributed Optimization on Networks, Applied and Computational
Harmonic Analysis, 70(2024)



Numerical Experiments: Least Squares

log error
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Numerical Experiments:

LASSO

log error

Consider F(x) = z||Hz — b3
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Numerical Experiments: SVM

OH =1+ 5Lg, where Lg is the graph Laplacian.

O y is randomly chosen.
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Outlook

Summary

O The proposed method is distributed in both the objective functions and the variables.
O It relies on the spatially local structures of the problem.

O It works well for both smooth and non-smooth problems.
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